
White Paper

Build a Better Sandbox.
Create a working strategy for

comprehensive malware protection.

Build a Better Sandbox 2

White Paper

Table of Contents
The Coevolution of Malware and Detection Analytics . 3

Dynamic versus static analysis . 3

The performance imperative . 4

Level One: Known Attack Detection . 4

Level Two: Real-time Behavioral Defenses . 5

Level Three: Dynamic Analysis . 5

Target-specific sandboxing . 5

The importance of interaction . 6

Interpreting dynamic analyses . 6

Level Four: Static Code Analysis . 7

Packing, unpacking, and reverse engineering . 7

A Downselect Strategy for Sandbox Superiority .10

Build a Better Sandbox 3

White Paper

The Coevolution of Malware and Detection Analytics
Cybercriminals and IT security strategists are locked in an escalating arms race. As the malware used
to infiltrate IT environments becomes ever more sophisticated and evasive, new technologies are
emerging to find the needle in the haystack, no matter how well camouflaged.

One of the most promising developments on the defensive side is occurring in the area of dynamic
analysis detection, commonly known as sandboxing. A number of products are currently available
and others are in various stages of commercialization. Not surprisingly, the architectural approaches
taken by leading developers vary widely, as do the ways these new products fit into larger security
strategies. At this time, it’s difficult to make confident comparisons between technologies, or even to
be sure that basic terminology is consistently applied.

This paper proposes a logical design strategy for dynamic malware analysis that optimizes detection
effectiveness, efficiency, and economics. We will attempt to identify the limits of dynamic detection
and the supplemental methods necessary to ensure robust security. Finally, we will suggest some
important distinctions that are commonly obscured by imprecise terminology.

Dynamic versus static analysis
Perhaps the most important bit of context for any discussion of advanced malware sandbox
solutions is the distinction between dynamic and static analysis. Dynamic analysis seeks to identify
malicious executable files by loading them into a secure runtime environment, usually virtualized,
and observing their behavior for some predetermined interval.

To properly contrast this tactic with static analysis requires that we first resolve a common
discrepancy in the latter term’s use. True static analysis (sometimes called static code analysis)
predicts an executable’s probable behaviors based on a detailed assessment of its code. The term
‘static analysis’ is often misapplied to simpler and less revealing techniques (sometimes called static
file analysis) that may only assay a portion of a file’s header, or that can access only unobfuscated file
content. These have limited utility in identifying advanced malware, and all uses of static analysis in
this paper refer to techniques capable of extracting, parsing, and analyzing a file’s full code.

Both dynamic and true static techniques have strengths and weaknesses. Dynamic analysis can
identify malware with a very high degree of confidence based on direct observation of its behavior.
It is the most reliable way to accurately identify hidden threats in complex executables, but can be
easily defeated by various stratagems. A file may simply outwait the observation period, delaying the
start of any revealing behavior for a predetermined interval that may be longer than an economically
viable sandbox inspection. A file may also be programmed to recognize a secure environment by
the absence (or presence) of certain resources, and to execute only a limited set of deceptively
innocuous operations.

Static inspection identifies malicious code with a lower degree of confidence than dynamic analysis
because it relies on inference rather than observation, yet it also provides a window into the nature
of latent (non-executing) code to which dynamic analysis is entirely blind. For example, static
code analysis identifies structural similarities between latent code and known malware samples. It
quantifies the percentage of code that executes during a sandbox evaluation, and even maps the
logical execution paths of a complex file without actually running any of the code.

What is striking is the degree to which the strengths and weaknesses of static and dynamic analysis
are complementary. While the techniques commonly associated with a malware sandbox are
dynamic, it is unlikely that reliable and accurate detection can be achieved unless both dynamic and
true static code analyses are applied in a well-integrated process. An effective sandbox must be
simultaneously dynamic and static.

Build a Better Sandbox 4

White Paper

The performance imperative
One characteristic that dynamic and static code analysis share is that both are computationally
intensive, to the extent that neither can be applied to network traffic flows in real time, and both
must be applied selectively to avoid degrading network and application performance. It may take
several minutes or even hours to complete this type of analysis, depending on the product and
vendor. A rational approach is to front-end them with more resource-efficient technologies that
can quickly and economically eliminate easily identified threats.

We believe that a highly efficient and effective malware sandbox can be created by layering
several types of analytical engines in a stacked sequence of increasing computational intensity.
All unknown files intercepted by network security sensors can be referred to this service for
evaluation. Each file passes through the stacked inspection engines beginning with the fastest and
least resource-intensive. Files that are identified as malicious at each level are immediately blocked
and removed from the inspection flow, reducing the load on downstream, more computationally
intensive analytics.

Local Lists Antivirus Signatures Global File Reputation Emulation Engine

Advanced Sandboxing
Static Code and Dynamic Analysis

Comprehensive Layered Approach Balances Performance and Protection

Figure 1. A downselect multiengine malware inspection process.

While the inspection stack composition should be extensible to incorporate new detection
techniques as they emerge, today’s state-of-the-art can be well represented by a sequence that
begins with known attack detection (signatures and reputation services), followed by real-time
behavioral detection (heuristics and emulation), dynamic analysis, and static code analysis. We
call this a downselect inspection architecture. Let’s examine this stratified process sequence level
by level.

Level One: Known Attack Detection
The two malware detection techniques used in first-level inspection are the oldest and most
widely deployed. They are also some of the most real-time and computationally light techniques.
Signature-based inspection, the core technology in all antivirus products, provides fast, positive
identification based on pattern matching against a library of known malicious code samples.
Reputation services collect intelligence on known sources of previous attacks, including hashes of
the actual malware, geographic locations, domains, URLs, and IP addresses, providing a basis for
identifying known, unknown, and zero-day attacks arriving from known malicious vectors.

Both of these techniques are fast, computationally frugal, and provide high-confidence threat
identification in real time. Their essential attributes are (1) a comprehensive library of known threat
signatures and sources and (2), a fast, reliable infrastructure for acquiring new threat intelligence
globally and distributing it to local sensors.

Since both of these technologies—and, to a lesser extent, the technologies included in level
two (below)—are widely deployed in existing security products, it is extremely helpful when our
sandbox management capabilities include the ability to separately define the sandbox inspection
engines to be applied to the files referred by each type of sensor. As a result, signature-based
inspection that has been performed by an IPS service, for instance, will not be repeated at
the sandbox.

Build a Better Sandbox 5

White Paper

Level Two: Real-time Behavioral Defenses
Two separate types of detection are also applied in the second inspection tier—heuristic and
emulation. Heuristic identification uses rules and behavior pattern analysis to create generic
constructs and distinguish similarities between a suspect file and groups or families of related
known threats. Emulation simulates file execution on a stripped-down host environment and logs
the resulting behaviors. The emulation environment may include a subset of the CPU, memory, and
operating-system API resources. Emulation is sometimes described as halfway-to-full dynamic
analysis or sandboxing light, but is sufficiently less resource intensive, allowing it to provide
real-time results.

Heuristics and emulation provide real-time identification of previously unobserved threats and
are only slightly less reliable than signature-based techniques. They involve some decompilation
and unpacking of code, but because this is a real-time process, few facilities are deployed here for
unpacking or reverse engineering obfuscated files.

We should note that different, language-specific emulators are needed for different types of
content (executables, shell code, JavaScript, HTML, and Java). An emulation engine’s reliability and
effectiveness are directly related to the completeness of its capabilities.

Level Three: Dynamic Analysis
The third level in our model sandbox architecture marks the dividing line between analyses that
takes place effectively in real time and those more resource-intensive techniques that inevitably
impose slightly greater latency. This is where files that have not been conclusively identified as
malicious in prior inspections are allowed to execute in a safely isolated virtual environment.
True dynamic analysis differs from emulation in that it instantiates a fully operational runtime
environment that is virtualized and isolated to allow safe execution of potentially malicious code,
then logs or classifies all observed behaviors.

Target-specific sandboxing
There are two common approaches to configuring the virtual environments used in a malware
sandbox. The differences are important because most IT environments comprise a variety
of hardware and software platforms, and most malware samples target a specific operating
environment or application. The first approach is to virtualize a single generic environment and use
it in all sample analyses. This approach risks missing malicious behaviors that are dependent on
specific resource sets or configuration parameters that may be unavailable in the generic image, but
it is resource efficient as only one analytical pass is needed.

The second approach is to virtualize multiple environments (various Windows server platforms and
configurations, perhaps, plus a selection of PC and mobile platform images). Suspect samples are
run against each of these environments. This strategy, however, still risks missing the actual target
environment, may produce more false positives, and is many times more computationally expensive
as well.

A far more effective and efficient strategy is to run a suspect executable in a virtual environment
that exactly matches the system for which the file was targeted. This approach requires that a
broad range of operating system options must be available, or that gold images of all endpoint
platforms in the environment can be imported. The sandbox must be able to identify the target host
environment on the fly and quickly launch a matching VM—and this is not a network activity, but
requires integration with endpoint systems. If these conditions can be met, the probability is greatly
increased that a suspect file’s full range of potential behaviors can be elicited and observed, and an
accurate assessment made of its intent.

Build a Better Sandbox 6

White Paper

The importance of interaction
In order for sandbox inspection to fully evaluate an executable’s intent, the virtual environment must
respond interactively to its behavior just as a normal host system would. In particular, the sandbox
must automatically emulate the normal host response to network connection requests. Lack of
these expected responses could inform malware that it is being analyzed in a sandbox, allowing it
to take evading actions. Reputation services must also be available to the sandbox, so that high-risk
requests for access to known malicious IP addresses, URLs, and files can be immediately identified
as high-probability threat indicators.

In addition to the interactivity that must be available to automatically triggered inline file inspections,
a fully interactive mode should be available to security analysts for offline manual analysis. In this
mode, an analyst should be able to manually launch a VM and load an executable sample with full
KVM functionality. Often it is only with the ability to launch browser sessions and other normal
workplace applications that specific threat behaviors can be triggered and observed.

Interpreting dynamic analyses
The first two levels of our inspection stack produce simple, real-time outputs. An unknown file is
quickly identified as a known threat through a signature match, or is seen to be sufficiently malicious
in real-time emulation environments. In either case, a binary decision to block or pass is quickly made.

In contrast, the initial output of a dynamic analysis is a log file that only becomes meaningful with
correlation. Specific behavioral events must be identified and aggregated, and their significance
assessed in the context of other events. The output from an enterprise-ready sandbox is not a long
and complicated log readout, nor is it an overly simple pass/block decision. A useful sandboxing
tool for the enterprise must provide an aggregated and organized report that calls out and classifies
relevant behaviors and awards an overall score. This score may be sufficient to trigger a blocking
decision, or may require supporting insight from subsequent static analysis. Either way, it gives
actionable information that security operators can use.

Figure 2. A behavioral summary and classification report from dynamic analysis.

Build a Better Sandbox 7

White Paper

Level Four: Static Code Analysis
The final downselect in our expanded multistage sandbox is true static-code analysis, which we might
more descriptively call disassembly list-code analysis. This process launches with the stage-three
dynamic analysis and it incorporates some outputs of dynamic inspection as they become available.

We mentioned earlier that our proposed stage-two inspection techniques—heuristics and
emulation—rely on access to a file’s source code, but that few facilities would be provided in that
real-time analysis for extracting obfuscated or packed code. That type of deep forensic examination
is precisely our objective here in stage four.

Figure 3. Dynamic analysis alone is an incomplete analysis.

Packing, unpacking, and reverse engineering
There are perfectly legitimate reasons for concealing or obfuscating a program’s compiled
executable code, the most obvious being intellectual property protection. Software developers
understandably wish to prevent competitors from reverse engineering their products by working
backwards from distributed assembly code to the source. Not surprisingly, other enterprising
developers have created a variety of commercial tools to make that exceedingly difficult. Called
packers (for example, Themida, Armadillo), these tools make it easy to apply an arsenal of masking
and randomization techniques to compiled program code, making it extremely hard to reconstruct
the assembly code and thus access the source. Malware writers or malware developers have simply
adopted the software industry’s own techniques, making their cloaked attacks much more difficult
to separate from legitimate files.

Difficult, perhaps, but not impossible.

Build a Better Sandbox 8

White Paper

Figure 4. The obfuscation menu in Themida, a powerful packing tool for Windows applications.

In the fourth stage of our malware sandbox, packed and obfuscated files are reverse engineered
to recover intact versions of the compiled assembly code. These are then parsed and subjected to
statistical analysis, providing:

 ■ An assessment of similarity with known malware families.

 ■ A measurement of the latent code which did not execute during dynamic analysis.

 ■ A logical map of the file’s complete execution path(s).

Modern advanced persistent threats (APTs) are typically adaptations of known—and effective—
malware code. Minor modifications are sufficient to evade signature inspection, which requires an
exact match to convict. However, inspection of the entire code, compared to a library of known
malware family references, often uncovers extremely stealthy malware.

For example, a suspicious file that has some minor indicators of compromise which are not severe
enough to block the file, but happen to have better than 70% similarity to a known malware family
(for example, conficker and voter_1), is a file that should be blocked. Without static code analysis,
this malware would have penetrated the network.

Figure 5. Family similarity is powerful evidence of malicious potential.

Build a Better Sandbox 9

White Paper

In a similar manner, APTs increasingly seek environmental awareness or require a specific sequence
of interaction to elicit action. This means that much of stealthy malware’s code may remain latent
during dynamic analysis. Even if the behavior of this latent code cannot be extracted, the fact that
a large portion of a suspect file’s code remains latent should be an important part of a security
analyst’s investigation.

Consider a suspect file that shows no malicious behavior. Dynamic analysis alone would conclude
that the file was safe. However, what if the file had greater than 70% similarity to a known malware
family, and what if more than 40% of the file’s code was not active or analyzed in the sandbox?
Those two pieces of circumstantial evidence are enough to block delivery of this file, at least until a
security operator can investigate it.

Hides file by changing its attributes.

Behavior Summary (57 percent code coverage):

Manipulated with active content in the
admin temporary directory.

Obtained and used icon of legit system
application.

Created executable content under
Windows directory.

Executed active content from Windows
system folder.

Set callback function to control system
and computer’s hardware events.

Downloaded data from a webserver.

Registered (unregistered) the service
name in a Dynamic Data Exchange
(DDE) server supports.

Detected executable content dropped
by the sample.

Created executable content under
Administrator temporary directory.

From Microsoft: CreateURLMoniker can produce
results that are not equivalent to the input, its use
can result in security problems.

Committed a region of memory within the
virtual address space of a foreign process.

Tried to connect to a specific service provider.

Created content under Windows System directory.

Figure 6. Significant portions of latent code point to holes in dynamic-only analysis.

When human investigation is necessary, a diagram of file operations can be an extremely helpful
forensics tool. Unlike log files or observations of behavior (dynamic analysis), a diagram helps
security operators investigate hidden areas and interaction of the code. This is often the key to
illicit otherwise latent code, especially when used in conjunction with a sandbox that allows manual
interaction with the suspect file within the VM.

Blue lines show code that was dynamically executed.
Red lines show code that was statically executed.

Figure 7. Visualizing file processes allows an operator to stimulate latent code.

White Paper

McAfee. Part of Intel Security.
2821 Mission College Boulevard
Santa Clara, CA 95054
888 847 8766
www.intelsecurity.com

These findings are then incorporated with the observations from stage-three dynamic analysis
to provide an overall score indicating the degree of certainty that the sample file or executable
is malicious.

A Downselect Strategy for Sandbox Superiority
An advanced malware detection service designed and configured following the stacked, downselect
strategy described above will provide a significantly more sophisticated, reliable, and cost-effective
solution than anything currently available in the marketplace. It will prevent sandbox overloading by
screening out known and easily identifiable threats using high-percentage, low-overhead signature-
based inspection and reputation intelligence services. It will dramatically increase the efficiency
and accuracy of dynamic analysis with target-specific execution sandboxing. Finally, true static code
analysis will render transparent the cloak of obfuscation to reveal the hidden nature of latent and
evasive code.

For once in the convoluted history of malware-security coevolution, security is about to make a
proactive leap forward.

Learn more at www.mcafee.com/atd.

About McAfee
McAfee is now part of Intel Security. With its Security Connected strategy, innovative approach
to hardware-enhanced security, and unique Global Threat Intelligence, Intel Security is intensely
focused on developing proactive, proven security solutions and services that protect systems,
networks, and mobile devices for business and personal use around the world. Intel Security
combines the experience and expertise of McAfee with the innovation and proven performance of
Intel to make security an essential ingredient in every architecture and on every computing platform.
Intel Security’s mission is to give everyone the confidence to live and work safely and securely in the
digital world. www.intelsecurity.com.

Intel and the Intel logo are registered trademarks of the Intel Corporation in the US and/or other countries. McAfee and the McAfee logo are registered
trademarks or trademarks of McAfee, Inc. or its subsidiaries in the US and other countries. Other marks and brands may be claimed as the property
of others. The product plans, specifications and descriptions herein are provided for information only and subject to change without notice, and are
provided without warranty of any kind, express or implied. Copyright © 2014 McAfee, Inc. 60837wp_build-sandbox_0214B_ETMG

http://www.intelsecurity.com
http://www.mcafee.com/atd

